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Abstract
The physical equivalence of Einstein and Jordan frames in scalar–tensor
theories was explained by Dicke in 1962: they are related by a local
transformation of units. We discuss this point in a cosmological framework.
Our main result is the construction of a formalism in which all the physical
observables are frame-invariant. The application of this approach to CMB
codes is at present under analysis.

PACS numbers: 04.20.Cv, 98.80.Cq

1. Introduction

Scalar–tensor theories (ST) can be considered as the simplest extension of general relativity
(GR) that preserves a universal metric coupling between gravity and matter [1–3]. In such
theories the gravitational interaction is described in terms of both a metric tensor and a scalar
field. This feature, together with the relevance of scalar fields in cosmology, makes ST theories
cosmologically interesting [4–9].

ST theories can be formulated in different frames. In the so-called Jordan frame, the
Einstein–Hilbert action of GR is modified by the introduction of a scalar field ϕ with a non-
canonical kinetic term and a potential. This field replaces the Planck mass, which becomes a
dynamical quantity. On the other hand, the matter part of the action is just the standard one.

By Weyl-rescaling the Jordan metric g̃µν as in the following

g̃µν = e−2b(ϕ)gµν, (1)

one can express the ST action in the so-called Einstein frame. In the new variable gµν ,
the gravitational action is just the Einstein–Hilbert one plus a scalar field with canonically
normalized kinetic terms and an effective potential. On the other hand, in the matter action the
scalar field appears, through the rescaling factor multiplying the metric tensor everywhere. As
a consequence, the matter energy–momentum tensor is not covariantly conserved, and particle
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physics parameters, such as masses and dimensionful coupling constants, are spacetime
dependent.

The physical equivalence between the two frames was clearly discussed by Dicke in
1962 [10]. He showed that the local Weyl rescaling of equation (1) amounts to a local
transformation of units; as a result the physical equivalence between different frames is trivial.
We develop here a formalism that makes transparent such an equivalence: in our language all
the observable quantities are manifestly frame-invariant (invariant under local transformations
of units). Sections 1–4 are devoted to the construction of a frame-invariant action for ST
theories. In sections 5 and 6 we discuss such a formalism in a cosmological framework.

2. Local transformations of units

We start summarizing Dicke’s argument. Let us consider the separation ĀB between two
spatial points A and B. The measure of ĀB in the units u is given by l ≡ ĀB/u. Under a
transformation of units

u → λ−1/2u (2)

the transformation properties of l are given by l → λ1/2l. The same argument we just applied
to a spatial interval could have been applied to a time interval. Therefore, a spacetime interval
ds = √

gµν dxµ dxν transforms under a transformation of units (2) in the following way
ds → λ1/2 ds. We should now remember that by definition the coordinates xρ are invariant
under the transformation (2). As a result, the metric tensor transforms under the action of (2)
like

gµν → λgµν. (3)

Comparing now the last expression with equation (1), we can conclude that the local
Weyl rescaling (1) has the meaning of a local transformation of units with λ(xρ) = e−2b(ϕ(xρ)).
With similar arguments one could derive the transformation properties of all the important
quantities. For example one has

l → e−b(ϕ)l, m → eb(ϕ)m, φ → eb(ϕ)φ, ψ → e
3
2 b(ϕ)ψ,

Aµ → Aµ, Pµ → Pµ, � → eb(ϕ)�, . . .
(4)

for a length, a mass, a scalar field, a spinor, a vector, the canonic momenta and a rate,
respectively. It should be clear now that in the language of Dicke to choose a frame amounts
to a local choice of units.

3. Frame-invariant variables

Knowing the transformation properties of the important quantities, one can define a set of
frame-invariant variables through which to construct a frame-invariant action for ST theories.
Let us start introducing a reference length lR. Its transformation properties under local
transformations of units are specified in equation (4). With this object we can construct, for
example, the following frame-invariant quantities:

m̄ ≡ lRm, φ̄ ≡ lRφ, ψ̄ ≡ l
3/2
R ψ,

�̄ ≡ lR�, hµν ≡ l−2
R gµν, . . . .

(5)

We will discuss in more detail the properties of the metric hµν when we will embed our
discussion in a cosmological framework. We want to stress here that lR is not a new scale
of the theory and it is not a dynamical field. From a mathematical point of view, it is just a
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quantity transforming like a length under a local transformation of units that we use for the
definitions (5). Physically, its meaning becomes clear if one observes that only ratio between
physical scales is really accessible to the experiments: lR, therefore, represents a convenient
reference magnitude appearing in such a ratio at the moment of performing a measurement.
As a result, the choice of its value is dictated by practical convenience. For instance, in
astrophysics lR can be a reference atomic wavelength, in particle physics the inverse of some
particle mass, or, in gravitational theories, the Planck length. ST theories are characterized
by the possibility of using spacetime-dependent reference lengths. As we will see in the next
section, in our language to choose a frame amounts to a choice of the function lR(xρ).

4. Frame-invariant action

Scalar–tensor theories can be defined in terms of frame-independent quantities by the action

S = SG[hµν, ϕ] + SM [hµν e−2b(ϕ), φ̄, ψ̄, . . .], (6)

where the frame-independent fields φ̄, ψ̄, . . . , appearing in the matter action SM are given by
the combinations in equation (5). The gravity action is given by

SG = κ

∫
d4x

√−h[R(h) − 2hµν∂µϕ∂νϕ − 4U(ϕ)]. (7)

In our language, choosing a frame corresponds to fixing the function lR(xρ) appropriately.
The first possible choice is to take a constant lR(xρ) = lPl, which corresponds to the Einstein
frame. The gravity action takes the usual Einstein–Hilbert form

SG = κl−2
Pl

∫
d4x

√−g[R(g) − 2gµν∂µϕ∂νϕ − 4V (ϕ)], (8)

with V = l−2
Pl U . The combination in front of the integral fixes the Einstein-frame Planck

mass, κl−2
Pl = M2

∗/2 = (16πG∗)−2. The matter action is obtained from that of quantum field
theory by substituting the Minkowsky metric ηµν with gµν e−2b(ϕ). Since in this frame the
matter energy–momentum tensor is not conserved, particle physics quantities, such as masses
and wavelengths, are not constant.

The other choice corresponds to the Jordan frame, which is obtained if one chooses
lR(xρ) = l̃P(x

ρ) = lPl e−b(ϕ(xρ)), where lPl is the previously defined Planck length in the
Einstein frame. With this choice the matter action takes the standard form of quantum field
theory (with ηµν → gµν), whereas the gravity action is

SG = M2
∗

2

∫
d4x

√−g̃ e2b(ϕ)[R(g̃) − 2g̃µν∂µϕ∂νϕ(1 − 3α2) − 4Ṽ (ϕ)], (9)

where Ṽ = l̃−2
P U, g̃µν is defined in (1) and α ≡ db

dϕ
. Note that, in this frame, the rôle of the

Planck mass is played by the spacetime-dependent quantity M∗ eb(ϕ). Since b(ϕ) disappears
from the matter action, the energy–momentum tensor is now covariantly conserved.

5. Background cosmology

Assuming a FRW structure for the metric gµν in equation (5) we can consistently write the
frame-invariant metric hµν in the following way

dh2 = −a2(τ )〈l〉−2
R (τ )(dτ 2 − δij dxi dxj ), (10)

where dh2 = hµν dxµ dxν and we took in to account that in a generic frame lR(xρ) =
〈l〉R(τ ) + δlR(xρ) can eventually be spacetime dependent. The quantity 〈l〉R(τ ) represents a
spatial average on a time-slice for an observer in the CMB rest-frame.
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The metric (10) implies the following redshift-scale factor relation:

1 + z(τ ) = a(τ0)

a(τ )

l̄at(τ )

l̄at(τ0)
. (11)

Here we wrote lR = lat to underline that in redshift measurement an atomic wavelength
is typically used as a reference length. The standard relation between the redshift and the
scale factor, i.e. 1 + z = a(τ0)/a(τ ) is recovered only in that frame in which the reference
wavelength lat is constant in time and space. In ST theories this is the case of the Jordan frame.

Background fluids motion is described in the frame invariant phase space (xi, Pj ). On
this phase space one can define a frame-invariant distribution function F(xi, Pj , τ ) and
consequently a frame-invariant energy–momentum tensor

T̄µν = l4
Rgs

∫
d3P

(2π)3
(−g)−1/2 PµPν

P 0
F(xi, P,, τ ), (12)

where d3P = dP1 dP2 dP3 and gs counts the spin degrees of freedom.
From the last expression, we can read the frame-invariant energy density ρ̄ = −T̄ 0

0 and
pressure p̄δi

j = −T̄ i
j . By variation of equation (6) it is now possible to derive the frame-

invariant equations of motion in a consistent frame-invariant FRW background. The results
are given in [12].

6. Cosmological perturbations

We extend here the formalism we developed so far to first-order in perturbation theory. Let us
start including first-order perturbations of the metric (10):

dh2 = a2(τ )/〈l〉2
R

[
−

(
1 + 2� − 2

δlR

lR

)
dτ 2 +

(
1 − 2� − 2

δlR

lR

)
δij dxi dxj

]
. (13)

From equation (13) we can read the definitions of frame-invariant scale factor and
potentials:

ā ≡ a/l̄R, �̄ ≡ � − δlR

lR
, φ̄ ≡ � +

δlR

lR
. (14)

The first-order equations of motions obtained by equations (6) and (13) are given in [12].
In the next section, we will apply the formalism we developed so far to the Boltzmann

equation. This can be of interest in many fields of cosmology.

7. The Boltzmann equation

The evolution of the phase-space density of a particle ψ , Fψ

(
xi

ψ, P
ψ

j , τ
)

is given by the
Boltzmann equation:

∂Fψ

∂τ
+

dxi
ψ

dτ

∂Fψ

∂xi
ψ

+
dP

ψ

j

dτ

∂Fψ

∂P
ψ

j

=
[

dFψ

dτ

]
C

. (15)

The frame-invariance of the LHS is trivially checked. Working with our variables, it is
an immediate consequence of the manifest frame-invariance of the geodesic equation [12]:

dP
ψ

j

dτ
− P

ψ

0 ∂j (�̄ + log m̄) = 0. (16)
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The collisional term for a generic process ψ + a + b + · · · ↔ i + j + · · · reads[
dFψ

dτ

]
C

(
xi

ψ, P
ψ

j , τ
) = 1

2P
ψ

0

∫
d�a d�b · · · d�i d�j · · ·

× (2π)4δ4(P ψ + P a + P b · · · − P i − P j · · ·)
× [|M|2ψ+a+b+···→i+j+···FψFaFb · · · (1 ± Fi)(1 ± Fj ) · · ·
− |M|2i+j+···→ψ+a+b+···FiFj · · · (1 ± Fψ)(1 ± Fa)(1 ± Fb) · · · ], (17)

where the ‘+’ applies to bosons and the ‘−’ to fermions, and d� is the frame-invariant quantity

d� ≡ l2
R

d4P

(2π)3
(−g)−1/2δ(P 2 + m2)�(P 0)

= l2
R

d3P

(2π)3

(−g)−1/2

2P 0
, (18)

with d4P = dP0 d3P . The delta-function in equation (17) depends on momenta with low
indices.

8. Conclusions

Following Dicke’s argument [10], we discussed here the relation between different frames in
ST theories in terms of local transformations of units. In this language the physical equivalence
of Einstein and Jordan frames is manifest and all the physical observables can be written in
terms of frame-invariant quantities. We applied such a formalism to the first-order perturbed
Boltzmann equation. Its frame-invariant expression (15) can be of interest in many analytical
and numerical computations.
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